Upgrades from Nevada Research for the National Seismic Hazard Map

Removal of Fault

- East Tahoe fault (0.3 m/ky)
 - Subaqueous data do not show a fault
 - Possible size of fault keeps shrinking

Recommend removing fault from the database.

New Published Fault Slip Rates

Normal Faults

Lone Mountain fault (0.13 m/ky)

- Hoeft and Frankel (Geosphere, 2010)
- \bullet > 0.12 0.36 m/ky

- ->0.12 m/ky (>17 m over 137 ky)
- 0.36 m/ky (6 m over 16.5 ky)

Fault scarp modeling and ¹⁰BE dating of alluvial fan surfaces.

Smith Valley fault (0.38 m/ky)

- Wesnousky and Caffee (BSSA, 2011)
- 0.125-0.33 m/ky late Pleistocene rate
 - 0.125 m/ky (~10 m Qi surface; 80 ky lacustrine seds. below Qo surface)
 - 0.33 m/ky (~20 m Qo surface; ~60 ky oldest cosmogenic date on Qo surface)

Fault scarp modeling and ¹⁰Be dating

Antelope Valley fault (0.8 m/ky)

- Sarmiento and others (BSSA, 2011)
- 0.7 m/ky interseismic rate
 - 3.6 m offset
 - ~5 ky (interseismic age of penultimate colluvial wedge RC dates from bottom and the top)

Wassuk Range fault zone (0.55 m/ky)

- Bormann and others (in press)
 - Holocene uplift rate 0.6-0.8 m/ky
 Trenching 5.5-7 m vertical separation;
 <~9400±95 cal yr B.P.
 - Late Pleistocene vertical uplift rate
 0.3-0.4 m/ky
 - ~40 m vertical uplift of abandoned alluvial fan surface
 - 10 Be and 26 Al cosmogenic dating of boulders mean age of cluster of ages 112.9 \pm 12.5 ka

Southern Steens fault zone

- Personius and others (BSSA, 2007)
- 0.24 ±0.06 m/ky latest Pleistocene
 - 4.4 ±0.2 m vert. sep in trench over 18 ±2.2 ka (luminescence date)
- 0.24-0.48 m/ky vertical slip rates ("probably best characterized by our average and multiple interval vertical slip rate" - using RC and luminescennce dates)

Santa Rosa fault

- Personius and Mahan (BSSA, 2005)
- 0.01-0.16 m/ky
 - 0.01-0.05 m/ky (most reported rates)
 - 0.16 m/ky (max. rate on an interseismic interval)

Examples: 14.6 ±3 m offset from scarps over 403 ±30 ky gives 0.03-0.05 m/ky and interval between PE2 and PE4 (109-144 ky) and offset 2.4-4.8 yield 0.02-0.04 m/ky (luminescent dating).

Normal-Oblique faults

Fairview fault zone (0.1 m/ky)

- Bell and others (BSSA, 2004)
- 0.09-0.22 ±0.03 m/ky normaloblique
 - 7.9 m RNO
 - 35.4 to ~100 ka age range for the penultimate event (35.4 Wilson Ck. Bed 19 tephra & est age of Qfo deposits soil development Bt & 1-m-thick III-IV Bk and Bqkm)

Sand Springs Range fault (0.1 m/ky)

- Bell and others (BSSA, 2004)
- 0.5 ± 0.01 m/ky normal oblique
 - 6.6 ±0.1 m over 13.3 ±2 ka (RC date)
 trenching study

Rainbow Mountain fault (0.15 m/ky)

- Caskey and others (BSSA, 2004)
- 0.2-0.25 m/ky normal-oblique
 - -3.5 ± 0.1 m RNO offset
 - -14.5 ± 2.0 to 17.8 ± 2.0 ky (RC dates)

Trench relationships

Strike-Slip faults

Benton Springs fault, southern section (0.26 m/ky)

- Wesnousky (Tectonics, 2005)
- ~1 m/ky (minimum right-lateral rate)
 - ~35 m right lateral offset of terrace riser
 Qf2b
 - <36 ka age estimate using soil development (identified as Qf2b by Bell (1995) characterized by a 15- to 25-cm-thick loamy clay Bt horizon; Bt development on the offset surface is less that Bell's chronosequence soil thus the <)</p>
 - Only for section with well-developed geomorphology

Bettles Well - Petrified Springs fault (0.1 m/ky)

- 1.1 to 1.65 m/ky (minimum late Pleistocene)
 - 90 m right-lateral offset of Qi surface
 - <60 to 90 ka age for surface based on soil development and pavement development (15-20 cm thick Bt with a stage II+ carbonate Bk below correlated to Bell (1995) chronosequence Qi1 soil)

Warm Springs Valley fault system (0.5 m/ky) • Gold and others (BSSA, in press)

- 1.8-2.4 m/ky post late Pleistocene fan offset
 - 98 ±42.5 m fan crest offset (LiDAR)
 - -41.5 55.7 ka (10 Be & 36 Cl dating)

• \leq 0.2 m/ky post 15.8 ka shoreline

New Historical Earthquake Magnitudes

• 1915 Pleasant Valley M_w7.3

A 3 m was used for the average displacement for the 1915 event, which yielded a seismic moment of 9.56 x 10²⁶ dyne-cm and corresponded to a moment magnitude of 7.3 (7.29 rounded off) using Hanks and Kanamori's (1979) relationship.